Filter and ParallelizeImageRegion Comparison#
Synopsis#
This example demonstrates how to take advantage of MultiThreaderBase::ParallelizeImageRegion. A comparison is made with LogImageFilter for purpose of computing log(1+x), where x is pixel value.
With ParallelizeImageRegion, we can process an image efficiently and in parallel with a function that is defined in a flexible way. The entire operation, defined in 10 lines of code, previously required the definition of an entire class.
Results#
Output:
LogImageFilter and ParallelizeImageRegion generate the same result.
Code#
C++#
#include "itkLogImageFilter.h"
#include "itkRandomImageSource.h"
#include "itkImageDuplicator.h"
#include "itkMultiThreaderBase.h"
#include "itkImageRegionIterator.h"
constexpr unsigned int Dimension = 2;
using PixelType = unsigned int;
using ImageType = itk::Image<PixelType, Dimension>;
// calculate log(1+x), where x is pixel value, using LogImageFilter
void
log1xViaLogImageFilter(ImageType::Pointer & image)
{
// LogImageFilter calculates log(x), so we have to modify the image first
// by increase its every pixel value by 1, and then apply log filter to it
itk::ImageRegionIterator<ImageType> it(image, image->GetBufferedRegion());
for (; !it.IsAtEnd(); ++it)
{
it.Set(1 + it.Get());
}
// classic filter declaration and invocation
using LogType = itk::LogImageFilter<ImageType, ImageType>;
auto logF = LogType::New();
logF->SetInput(image);
logF->SetInPlace(true);
logF->Update();
image = logF->GetOutput();
image->DisconnectPipeline();
}
// calculate log(1+x), where x is pixel value, using ParallelizeImageRegion
void
log1xViaParallelizeImageRegion(ImageType::Pointer & image)
{
itk::MultiThreaderBase::Pointer mt = itk::MultiThreaderBase::New();
// ParallelizeImageRegion invokes the provided lambda function in parallel
// each invocation will contain a piece of the overall region
mt->ParallelizeImageRegion<Dimension>(
image->GetBufferedRegion(),
// here we creat an ad-hoc lambda function to process the region pieces
// the lambda will have access to variable 'image' from the outer function
// it will have parameter 'region', which needs to be processed
[image](const ImageType::RegionType & region) {
itk::ImageRegionIterator<ImageType> it(image, region);
for (; !it.IsAtEnd(); ++it)
{
it.Set(std::log(1 + it.Get()));
}
},
nullptr); // we don't have a filter whose progress needs to be updated
}
int
main()
{
int result = EXIT_SUCCESS;
// create an image
ImageType::RegionType region = { { 0, 0 }, { 50, 20 } }; // indices zero, size 50x20
using RandomSourceType = itk::RandomImageSource<ImageType>;
auto randomImageSource = RandomSourceType::New();
randomImageSource->SetSize(region.GetSize());
// we don't want overflow on 1+x operation, so set max pixel value
randomImageSource->SetMax(itk::NumericTraits<PixelType>::max() - 1);
randomImageSource->SetNumberOfWorkUnits(1); // to produce deterministic results
randomImageSource->Update();
ImageType::Pointer image = randomImageSource->GetOutput();
image->DisconnectPipeline();
// create another image, to be passed to the alternative method
using DuplicatorType = itk::ImageDuplicator<ImageType>;
auto duplicator = DuplicatorType::New();
duplicator->SetInputImage(image);
duplicator->Update();
ImageType::Pointer clonedImage = duplicator->GetOutput();
clonedImage->DisconnectPipeline();
// invoke the two functions
log1xViaLogImageFilter(image);
log1xViaParallelizeImageRegion(clonedImage);
// compare to make sure the results are the same
unsigned diffCount = 0;
itk::ImageRegionConstIterator<ImageType> it1(image, region);
itk::ImageRegionConstIterator<ImageType> it2(clonedImage, region);
for (; !it1.IsAtEnd(); ++it1, ++it2)
{
if (it1.Get() != it2.Get())
{
std::cerr << "Pixel values are different at index " << it1.GetIndex() << it1.Get() << " vs. " << it2.Get()
<< std::endl;
//<< "\n\tlog1xViaLogImageFilter's value: " << it1.Get()
//<< "\n\tlog1xViaParallelizeImageRegion: " << it2.Get() << std::endl;
diffCount++;
result = EXIT_FAILURE;
}
}
if (diffCount == 0)
{
std::cout << "LogImageFilter and ParallelizeImageRegion generate the same result." << std::endl;
}
else
{
std::cout << "Discrepancy! " << diffCount << " pixels out of " << region.GetNumberOfPixels() << " are different."
<< std::endl;
}
return result;
}
Classes demonstrated#
-
template<typename TInputImage, typename TOutputImage>
class LogImageFilter : public itk::UnaryGeneratorImageFilter<TInputImage, TOutputImage> Computes the log() of each pixel.
-
class MultiThreaderBase : public itk::Object
A class for performing multithreaded execution.
Multithreaders are a class hierarchy that provides support for multithreaded execution by abstracting away platform-specific details. This class can be used to execute a single method on multiple threads or to parallelize an operation over a given image region or array.
Subclassed by itk::PoolMultiThreader, itk::TBBMultiThreader