Label Binary Regions in Image#
Synopsis#
Label binary regions in an image.
Results#
Output:
There are 1 objects.
Object 0 contains pixel [6, 6]
Object 0 contains pixel [7, 6]
Object 0 contains pixel [8, 6]
Object 0 contains pixel [9, 6]
Object 0 contains pixel [6, 7]
Object 0 contains pixel [7, 7]
Object 0 contains pixel [8, 7]
Object 0 contains pixel [9, 7]
Object 0 contains pixel [6, 8]
Object 0 contains pixel [7, 8]
Object 0 contains pixel [8, 8]
Object 0 contains pixel [9, 8]
Object 0 contains pixel [6, 9]
Object 0 contains pixel [7, 9]
Object 0 contains pixel [8, 9]
Object 0 contains pixel [9, 9]
Code#
C++#
#include "itkImage.h"
#include "itkImageFileWriter.h"
#include "itkImageRegionIterator.h"
#include "itkBinaryImageToLabelMapFilter.h"
using ImageType = itk::Image<unsigned char, 2>;
static void
CreateImage(ImageType::Pointer image);
int
main()
{
auto image = ImageType::New();
CreateImage(image);
using BinaryImageToLabelMapFilterType = itk::BinaryImageToLabelMapFilter<ImageType>;
auto binaryImageToLabelMapFilter = BinaryImageToLabelMapFilterType::New();
binaryImageToLabelMapFilter->SetInput(image);
binaryImageToLabelMapFilter->Update();
// The output of this filter is an itk::LabelMap, which contains itk::LabelObject's
std::cout << "There are " << binaryImageToLabelMapFilter->GetOutput()->GetNumberOfLabelObjects() << " objects."
<< std::endl;
// Loop over each region
for (unsigned int i = 0; i < binaryImageToLabelMapFilter->GetOutput()->GetNumberOfLabelObjects(); ++i)
{
// Get the ith region
BinaryImageToLabelMapFilterType::OutputImageType::LabelObjectType * labelObject =
binaryImageToLabelMapFilter->GetOutput()->GetNthLabelObject(i);
// Output the pixels composing the region
for (unsigned int pixelId = 0; pixelId < labelObject->Size(); ++pixelId)
{
std::cout << "Object " << i << " contains pixel " << labelObject->GetIndex(pixelId) << std::endl;
}
}
return EXIT_SUCCESS;
}
void
CreateImage(ImageType::Pointer image)
{
// Create a black image with a white square
ImageType::IndexType start;
start.Fill(0);
ImageType::SizeType size;
size.Fill(20);
ImageType::RegionType region;
region.SetSize(size);
region.SetIndex(start);
image->SetRegions(region);
image->Allocate();
itk::ImageRegionIterator<ImageType> imageIterator(image, image->GetLargestPossibleRegion());
// Make a square
while (!imageIterator.IsAtEnd())
{
if ((imageIterator.GetIndex()[0] > 5 && imageIterator.GetIndex()[0] < 10) &&
(imageIterator.GetIndex()[1] > 5 && imageIterator.GetIndex()[1] < 10))
{
imageIterator.Set(255);
}
else
{
imageIterator.Set(0);
}
++imageIterator;
}
itk::WriteImage(image, "image.png");
}
Classes demonstrated#
-
template<typename TInputImage, typename TOutputImage = LabelMap<LabelObject<SizeValueType, TInputImage::ImageDimension>>>
class BinaryImageToLabelMapFilter : public itk::ImageToImageFilter<TInputImage, TOutputImage>, protected itk::ScanlineFilterCommon<TInputImage, TOutputImage> Label the connected components in a binary image and produce a collection of label objects.
BinaryImageToLabelMapFilter labels the objects in a binary image. Each distinct object is assigned a unique label. The final object labels start with 1 and are consecutive. Objects that are reached earlier by a raster order scan have a lower label.
The GetOutput() function of this class returns an itk::LabelMap.
This implementation was taken from the Insight Journal paper: https://www.insight-journal.org/browse/publication/176
- Author
Gaetan Lehmann. Biologie du Developpement et de la Reproduction, INRA de Jouy-en-Josas, France.
- See
ConnectedComponentImageFilter, LabelImageToLabelMapFilter, LabelMap, LabelObject
- ITK Sphinx Examples: