Matrix#
Synopsis#
This will create and display a matrix of NxN dimensions, then multiply it by a vector of N dimension.
Results#
Output:
M: 1 2 3
4 5 6
7 8 9
M: 1 2 3
4 5 6
7 8 9
V: [1, 2, 3]
MV: [14, 32, 50]
Code#
C++#
#include <itkMatrix.h>
#include <itkVector.h>
#include <iostream>
static void
Construct();
// static void ConstructRunTimeDims();
static void
Multiply();
// static void Inverse();
int
main()
{
Construct();
Multiply();
return EXIT_SUCCESS;
}
void
Construct()
{
using MatrixType = itk::Matrix<double, 3, 3>;
MatrixType M;
M(0, 0) = 1.0;
M(0, 1) = 2.0;
M(0, 2) = 3.0;
M(1, 0) = 4.0;
M(1, 1) = 5.0;
M(1, 2) = 6.0;
M(2, 0) = 7.0;
M(2, 1) = 8.0;
M(2, 2) = 9.0;
std::cout << "M: " << M << std::endl;
}
/*
void ConstructRunTimeDims()
{
int matrixSize = 3;
using MatrixType = itk::Matrix<double, matrixSize, matrixSize>;
MatrixType M;
M(0,0) = 1.0;
M(0,1) = 2.0;
M(0,2) = 3.0;
M(1,0) = 4.0;
M(1,1) = 5.0;
M(1,2) = 6.0;
M(2,0) = 7.0;
M(2,1) = 8.0;
M(2,2) = 9.0;
std::cout << "M: " << M << std::endl;
}
*/
void
Multiply()
{
using MatrixType = itk::Matrix<double, 3, 3>;
MatrixType M;
M(0, 0) = 1.0;
M(0, 1) = 2.0;
M(0, 2) = 3.0;
M(1, 0) = 4.0;
M(1, 1) = 5.0;
M(1, 2) = 6.0;
M(2, 0) = 7.0;
M(2, 1) = 8.0;
M(2, 2) = 9.0;
std::cout << "M: " << M << std::endl;
using VectorType = itk::Vector<double, 3>;
VectorType V;
V[0] = 1.0;
V[1] = 2.0;
V[2] = 3.0;
std::cout << "V: " << V << std::endl;
std::cout << "MV: " << M * V << std::endl;
}
/*
void Inverse()
{
}
*/
Classes demonstrated#
-
template<typename T, unsigned int NRows = 3, unsigned int NColumns = 3>
class Matrix A templated class holding a M x N size Matrix.
This class contains a vnl_matrix_fixed in order to make all the vnl mathematical methods available.
- ITK Sphinx Examples: