Compute Gradient Magnitude of Grayscale Image#
Synopsis#
This example demonstrates how to compute the magnitude of the gradient of an image.
Results#
Code#
C++#
#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkGradientMagnitudeImageFilter.h"
int
main(int argc, char * argv[])
{
// Verify command line arguments
if (argc != 3)
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " <InputImage> <OutputImage" << std::endl;
return EXIT_FAILURE;
}
const char * inputFileName = argv[1];
const char * outputFileName = argv[2];
constexpr unsigned int Dimension = 2;
using InputPixelType = unsigned char;
using InputImageType = itk::Image<InputPixelType, Dimension>;
using OutputPixelType = float;
using OutputImageType = itk::Image<OutputPixelType, Dimension>;
const auto input = itk::ReadImage<InputImageType>(inputFileName);
// Create and setup a gradient filter
using FilterType = itk::GradientMagnitudeImageFilter<InputImageType, OutputImageType>;
auto gradientFilter = FilterType::New();
gradientFilter->SetInput(input);
try
{
itk::WriteImage(gradientFilter->GetOutput(), outputFileName);
}
catch (const itk::ExceptionObject & error)
{
std::cerr << "Error: " << error << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
Classes demonstrated#
-
template<typename TInputImage, typename TOutputImage>
class GradientMagnitudeImageFilter : public itk::ImageToImageFilter<TInputImage, TOutputImage> Computes the gradient magnitude of an image region at each pixel.
- See
Image
- See
Neighborhood
- See
NeighborhoodOperator
- See
NeighborhoodIterator
- ITK Sphinx Examples: