Multiphase Chan and Vese Sparse Field Level Set Segmentation#
Note
Wish List Still needs additional work to finish proper creation of example.
Synopsis#
Multiphase Chan And Vese Sparse Field Level Set Segmentation.
Results#
Note
Help Wanted Implementation of Results for sphinx examples containing this message. Reconfiguration of CMakeList.txt may be necessary. Write An Example <https://itk.org/ITKExamples/Documentation/Contribute/WriteANewExample.html>
Code#
C++#
#include "itkScalarChanAndVeseSparseLevelSetImageFilter.h"
#include "itkScalarChanAndVeseLevelSetFunction.h"
#include "itkScalarChanAndVeseLevelSetFunctionData.h"
#include "itkConstrainedRegionBasedLevelSetFunctionSharedData.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkImage.h"
#include "itkAtanRegularizedHeavisideStepFunction.h"
int
main(int argc, char ** argv)
{
if (argc < 10)
{
std::cerr << "Missing arguments" << std::endl;
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0];
std::cerr << " inputLevelSetImage1 inputLevelSetImage2 inputLevelSetImage3";
std::cerr << " inputFeatureImage outputLevelSetImage";
std::cerr << " CurvatureWeight AreaWeight LaplacianWeight";
std::cerr << " VolumeWeight Volume OverlapWeight" << std::endl;
return EXIT_FAILURE;
}
unsigned int nb_iteration = 50;
double rms = 0.;
double epsilon = 1.5;
double curvature_weight = std::stod(argv[6]);
double area_weight = std::stod(argv[7]);
double volume_weight = std::stod(argv[8]);
double volume = std::stod(argv[9]);
double overlap_weight = std::stod(argv[10]);
double l1 = 1.;
double l2 = 1.;
constexpr unsigned int Dimension = 2;
using ScalarPixelType = float;
using LevelSetImageType = itk::Image<ScalarPixelType, Dimension>;
using FeatureImageType = itk::Image<unsigned char, Dimension>;
using OutputImageType = itk::Image<unsigned char, Dimension>;
using DataHelperType = itk::ScalarChanAndVeseLevelSetFunctionData<LevelSetImageType, FeatureImageType>;
using SharedDataHelperType =
itk::ConstrainedRegionBasedLevelSetFunctionSharedData<LevelSetImageType, FeatureImageType, DataHelperType>;
using LevelSetFunctionType =
itk::ScalarChanAndVeseLevelSetFunction<LevelSetImageType, FeatureImageType, SharedDataHelperType>;
using MultiLevelSetType = itk::ScalarChanAndVeseSparseLevelSetImageFilter<LevelSetImageType,
FeatureImageType,
OutputImageType,
LevelSetFunctionType,
SharedDataHelperType>;
using DomainFunctionType = itk::AtanRegularizedHeavisideStepFunction<ScalarPixelType, ScalarPixelType>;
auto domainFunction = DomainFunctionType::New();
domainFunction->SetEpsilon(epsilon);
LevelSetImageType::Pointer contourImage1 = itk::ReadImage<LevelSetImageType>(argv[1]);
LevelSetImageType::Pointer contourImage2 = itk::ReadImage<LevelSetImageType>(argv[2]);
LevelSetImageType::Pointer contourImage3 = itk::ReadImage<LevelSetImageType>(argv[3]);
FeatureImageType::Pointer featureImage = itk::ReadImage<FeatureImageType>(argv[4]);
auto levelSetFilter = MultiLevelSetType::New();
levelSetFilter->SetFunctionCount(3);
levelSetFilter->SetFeatureImage(featureImage);
levelSetFilter->SetLevelSet(0, contourImage1);
levelSetFilter->SetLevelSet(1, contourImage2);
levelSetFilter->SetLevelSet(2, contourImage3);
levelSetFilter->SetNumberOfIterations(nb_iteration);
levelSetFilter->SetMaximumRMSError(rms);
levelSetFilter->SetUseImageSpacing(1);
levelSetFilter->SetInPlace(false);
for (unsigned int i = 0; i < 3; ++i)
{
levelSetFilter->GetDifferenceFunction(i)->SetDomainFunction(domainFunction);
levelSetFilter->GetDifferenceFunction(i)->SetCurvatureWeight(curvature_weight);
levelSetFilter->GetDifferenceFunction(i)->SetAreaWeight(area_weight);
levelSetFilter->GetDifferenceFunction(i)->SetOverlapPenaltyWeight(overlap_weight);
levelSetFilter->GetDifferenceFunction(i)->SetVolumeMatchingWeight(volume_weight);
levelSetFilter->GetDifferenceFunction(i)->SetVolume(volume);
levelSetFilter->GetDifferenceFunction(i)->SetLambda1(l1);
levelSetFilter->GetDifferenceFunction(i)->SetLambda2(l2);
}
levelSetFilter->Update();
try
{
itk::WriteImage(levelSetFilter->GetOutput(), argv[5]);
}
catch (const itk::ExceptionObject & excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
return -1;
}
return EXIT_SUCCESS;
}
Classes demonstrated#
-
template<typename TInputImage, typename TFeatureImage, typename TOutputImage, typename TFunction = ScalarChanAndVeseLevelSetFunction<TInputImage, TFeatureImage>, class TSharedData = typename TFunction::SharedDataType, typename TIdCell = unsigned int>
class ScalarChanAndVeseSparseLevelSetImageFilter : public itk::MultiphaseSparseFiniteDifferenceImageFilter<TInputImage, TFeatureImage, TOutputImage, TFunction, TIdCell> Sparse implementation of the Chan and Vese multiphase level set image filter.
This code was adapted from the paper:
"An active contour model without edges" T. Chan and L. Vese. In Scale-Space Theories in Computer Vision, pages 141-151, 1999.
This code was taken from the Insight Journal paper:
"Cell Tracking using Coupled Active Surfaces for Nuclei and Membranes" http://www.insight-journal.org/browse/publication/642 https://hdl.handle.net/10380/3055
- Author
Mosaliganti K., Smith B., Gelas A., Gouaillard A., Megason S.
That is based on the papers:
"Level Set Segmentation: Active Contours without edge" http://www.insight-journal.org/browse/publication/322 https://hdl.handle.net/1926/1532 and "Level set segmentation using coupled active surfaces" http://www.insight-journal.org/browse/publication/323 https://hdl.handle.net/1926/1533
-
template<typename TInputImage, typename TFeatureImage, typename TSharedData = ConstrainedRegionBasedLevelSetFunctionSharedData<TInputImage, TFeatureImage, ScalarChanAndVeseLevelSetFunctionData<TInputImage, TFeatureImage>>>
class ScalarChanAndVeseLevelSetFunction : public itk::ScalarRegionBasedLevelSetFunction<TInputImage, TFeatureImage, TSharedData> LevelSet function that computes a speed image based on regional integrals of probabilities.
This class implements a level set function that computes the speed image by integrating values on the image domain.
Based on the papers:
"An active contour model without edges" T. Chan and L. Vese. In Scale-Space Theories in Computer Vision, pages 141-151, 1999. "Segmenting and Tracking Fluorescent Cells in Dynamic 3-D Microscopy With Coupled Active Surfaces" Dufour, Shinin, Tajbakhsh, Guillen-Aghion, Olivo-Marin In IEEE Transactions on Image Processing, vol. 14, No 9, Sep. 2005
- Author
Mosaliganti K., Smith B., Gelas A., Gouaillard A., Megason S.
This code was taken from the Insight Journal paper:
"Cell Tracking using Coupled Active Surfaces for Nuclei and Membranes" http://www.insight-journal.org/browse/publication/642 https://hdl.handle.net/10380/3055
That is based on the papers:
"Level Set Segmentation: Active Contours without edge" http://www.insight-journal.org/browse/publication/322 https://hdl.handle.net/1926/1532 and "Level set segmentation using coupled active surfaces" http://www.insight-journal.org/browse/publication/323 https://hdl.handle.net/1926/1533