Add Gaussian Noise to an Image#

Synopsis#

Adds Gaussian Noise to a particular image

Results#

../../../../_images/Gourds8.png

Input Image#

../../../../_images/OutputImage.png

Output Image#

Code#

Python#

#!/usr/bin/env python

import itk
import argparse

parser = argparse.ArgumentParser(description="Additive Gaussian Noise Image Filter.")
parser.add_argument("input_image")
parser.add_argument("output_image")
parser.add_argument("mean", type=float)
parser.add_argument("standard_deviation", type=float)
args = parser.parse_args()

# Use unsigned char to save to PNG format
InputPixelType = itk.UC
OutputPixelType = itk.UC
Dimension = 2

InputImageType = itk.Image[InputPixelType, Dimension]
OutputImageType = itk.Image[OutputPixelType, Dimension]

ReaderType = itk.ImageFileReader[InputImageType]
reader = ReaderType.New()
reader.SetFileName(args.input_image)

FilterType = itk.AdditiveGaussianNoiseImageFilter[InputImageType, InputImageType]
AdditiveFilter = FilterType.New()
AdditiveFilter.SetInput(reader.GetOutput())
AdditiveFilter.SetMean(args.mean)
AdditiveFilter.SetStandardDeviation(args.standard_deviation)

WriterType = itk.ImageFileWriter[OutputImageType]
writer = WriterType.New()
writer.SetFileName(args.output_image)
writer.SetInput(AdditiveFilter.GetOutput())

writer.Update()

C++#

#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkAdditiveGaussianNoiseImageFilter.h"

int
main(int argc, char * argv[])
{
  // Check for proper arguments; if not, explain usage.
  if (argc != 5)
  {
    std::cerr << "Usage: " << std::endl;
    std::cerr << argv[0];
    std::cerr << " <InputFileName> <OutputFileName> [Mean] [Standard Deviation]";
    std::cerr << std::endl;
    return EXIT_FAILURE;
  }

  // Initialize and assign user provided variables
  const char * inputImage = argv[1];
  const char * outputImage = argv[2];

  // Get floating point numbers for the mean and std dev to perform the algorithm
  const double mean = std::stod(argv[3]);
  const double deviation = std::stod(argv[4]);

  constexpr unsigned int Dimension = 2;
  // Use unsigned char to save to PNG format
  using PixelType = unsigned char;
  using ImageType = itk::Image<PixelType, Dimension>;

  const auto input = itk::ReadImage<ImageType>(inputImage);

  // Create the filter and apply the algorithm to the image
  using FilterType = itk::AdditiveGaussianNoiseImageFilter<ImageType, ImageType>;
  auto filter = FilterType::New();
  filter->SetInput(input);
  filter->SetMean(mean);                   // Set the mean
  filter->SetStandardDeviation(deviation); // Set the standard deviation

  try
  {
    itk::WriteImage(filter->GetOutput(), outputImage);
  }
  catch (const itk::ExceptionObject & error)
  {
    std::cerr << "Error: " << error << std::endl;
    return EXIT_FAILURE;
  }

  return EXIT_SUCCESS;
}

Classes demonstrated#

template<class TInputImage, class TOutputImage = TInputImage>
class AdditiveGaussianNoiseImageFilter : public itk::NoiseBaseImageFilter<TInputImage, TOutputImage>

Alter an image with additive Gaussian white noise.

Additive Gaussian white noise can be modeled as:

The noise is independent of the pixel intensities.

I = I_0 + N

where I is the observed image, I_0 is the noise-free image and N is a normally distributed random variable of mean \mu and variance \sigma^2:

N \sim \mathcal{N}(\mu, \sigma^2)

This code was contributed in the Insight Journal paper “Noise

Simulation”.

https://www.insight-journal.org/browse/publication/721
Author

Gaetan Lehmann

See itk::AdditiveGaussianNoiseImageFilter for additional documentation.