Scale an Image#
Synopsis#
Scale an image.
Results#
Code#
C++#
#include "itkImage.h"
#include "itkScaleTransform.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkResampleImageFilter.h"
int
main(int argc, char * argv[])
{
if (argc < 3)
{
std::cerr << "Usage: " << argv[0] << " inputFile outputFile" << std::endl;
}
using PixelType = unsigned char;
constexpr unsigned int ImageDimension = 2;
using ImageType = itk::Image<PixelType, ImageDimension>;
auto image = itk::ReadImage<ImageType>(argv[1]);
using MetricValueType = double;
using TransformType = itk::ScaleTransform<MetricValueType, 2>;
auto scaleTransform = TransformType::New();
itk::FixedArray<float, 2> scale;
scale[0] = 1.5; // newWidth/oldWidth
scale[1] = 1.5;
scaleTransform->SetScale(scale);
itk::Point<float, 2> center;
center[0] = image->GetLargestPossibleRegion().GetSize()[0] / 2;
center[1] = image->GetLargestPossibleRegion().GetSize()[1] / 2;
scaleTransform->SetCenter(center);
using ResampleImageFilterType = itk::ResampleImageFilter<ImageType, ImageType, MetricValueType>;
auto resampleFilter = ResampleImageFilterType::New();
resampleFilter->SetTransform(scaleTransform);
resampleFilter->SetInput(image);
resampleFilter->SetSize(image->GetLargestPossibleRegion().GetSize());
resampleFilter->Update();
itk::WriteImage(resampleFilter->GetOutput(), argv[2]);
return EXIT_SUCCESS;
}
Python …
import sys
import itk
if len(sys.argv) < 3:
raise Exception(f"Usage: {sys.argv[0]} inputFile outputFile")
image = itk.imread(sys.argv[1], itk.UC)
image_dimension = image.GetImageDimension()
transform = itk.ScaleTransform[itk.D, 2].New(
scale=[1.5] * image_dimension, center=[x / 2 for x in itk.size(image)]
)
scaled_image = itk.resample_image_filter(
image, transform=transform, size=itk.size(image)
)
itk.imwrite(scaled_image, sys.argv[2])
Classes demonstrated#
-
template<typename TParametersValueType = float, unsigned int NDimensions = 3>
class ScaleTransform : public itk::MatrixOffsetTransformBase<TParametersValueType, NDimensions, NDimensions> Scale transformation of a vector space (e.g. space coordinates)
The same functionality could be obtained by using the Affine transform, but with a large difference in performance since the affine transform will use a matrix multiplication using a diagonal matrix.
- ITK Sphinx Examples:
Subclassed by itk::ScaleLogarithmicTransform< TParametersValueType, NDimensions >