Subtract Two Images#
Synopsis#
Subtract two images from one another.
Results#
Code#
C++#
#include "itkImage.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkSubtractImageFilter.h"
#include "itkImageToVTKImageFilter.h"
#include "vtkVersion.h"
#include "vtkImageViewer.h"
#include "vtkImageMapper3D.h"
#include "vtkRenderWindowInteractor.h"
#include "vtkSmartPointer.h"
#include "vtkImageActor.h"
#include "vtkInteractorStyleImage.h"
#include "vtkRenderer.h"
using ImageType = itk::Image<unsigned char, 2>;
static void
CreateImage1(ImageType::Pointer image);
static void
CreateImage2(ImageType::Pointer image);
int
main()
{
auto image1 = ImageType::New();
CreateImage1(image1);
auto image2 = ImageType::New();
CreateImage2(image2);
using SubtractImageFilterType = itk::SubtractImageFilter<ImageType, ImageType>;
auto subtractFilter = SubtractImageFilterType::New();
subtractFilter->SetInput1(image1);
subtractFilter->SetInput2(image2);
subtractFilter->Update();
// Visualize first image
using ConnectorType = itk::ImageToVTKImageFilter<ImageType>;
auto connector1 = ConnectorType::New();
connector1->SetInput(image1);
vtkSmartPointer<vtkImageActor> actor1 = vtkSmartPointer<vtkImageActor>::New();
#if VTK_MAJOR_VERSION <= 5
actor1->SetInput(connector1->GetOutput());
#else
connector1->Update();
actor1->GetMapper()->SetInputData(connector1->GetOutput());
#endif
// Visualize second image
using ConnectorType = itk::ImageToVTKImageFilter<ImageType>;
auto connector2 = ConnectorType::New();
connector2->SetInput(image2);
vtkSmartPointer<vtkImageActor> actor2 = vtkSmartPointer<vtkImageActor>::New();
#if VTK_MAJOR_VERSION <= 5
actor2->SetInput(connector2->GetOutput());
#else
connector2->Update();
actor2->GetMapper()->SetInputData(connector2->GetOutput());
#endif
// Visualize subtracted image
auto subtractConnector = ConnectorType::New();
subtractConnector->SetInput(subtractFilter->GetOutput());
vtkSmartPointer<vtkImageActor> subtractActor = vtkSmartPointer<vtkImageActor>::New();
#if VTK_MAJOR_VERSION <= 5
subtractActor->SetInput(subtractConnector->GetOutput());
#else
subtractConnector->Update();
subtractActor->GetMapper()->SetInputData(subtractConnector->GetOutput());
#endif
// There will be one render window
vtkSmartPointer<vtkRenderWindow> renderWindow = vtkSmartPointer<vtkRenderWindow>::New();
renderWindow->SetSize(900, 300);
vtkSmartPointer<vtkRenderWindowInteractor> interactor = vtkSmartPointer<vtkRenderWindowInteractor>::New();
interactor->SetRenderWindow(renderWindow);
// Define viewport ranges
// (xmin, ymin, xmax, ymax)
double leftViewport[4] = { 0.0, 0.0, 0.33, 1.0 };
double centerViewport[4] = { 0.33, 0.0, 0.66, 1.0 };
double rightViewport[4] = { 0.66, 0.0, 1.0, 1.0 };
// Setup both renderers
vtkSmartPointer<vtkRenderer> leftRenderer = vtkSmartPointer<vtkRenderer>::New();
renderWindow->AddRenderer(leftRenderer);
leftRenderer->SetViewport(leftViewport);
leftRenderer->SetBackground(.6, .5, .4);
vtkSmartPointer<vtkRenderer> centerRenderer = vtkSmartPointer<vtkRenderer>::New();
renderWindow->AddRenderer(centerRenderer);
centerRenderer->SetViewport(centerViewport);
centerRenderer->SetBackground(.4, .5, .6);
vtkSmartPointer<vtkRenderer> rightRenderer = vtkSmartPointer<vtkRenderer>::New();
renderWindow->AddRenderer(rightRenderer);
rightRenderer->SetViewport(rightViewport);
rightRenderer->SetBackground(.4, .5, .6);
// Add the sphere to the left and the cube to the right
leftRenderer->AddActor(actor1);
centerRenderer->AddActor(actor2);
rightRenderer->AddActor(subtractActor);
leftRenderer->ResetCamera();
centerRenderer->ResetCamera();
rightRenderer->ResetCamera();
renderWindow->Render();
vtkSmartPointer<vtkInteractorStyleImage> style = vtkSmartPointer<vtkInteractorStyleImage>::New();
interactor->SetInteractorStyle(style);
interactor->Start();
return EXIT_SUCCESS;
}
void
CreateImage1(ImageType::Pointer image)
{
// Create an image with 2 connected components
ImageType::RegionType region;
ImageType::IndexType start;
start[0] = 0;
start[1] = 0;
ImageType::SizeType size;
unsigned int NumRows = 200;
unsigned int NumCols = 300;
size[0] = NumRows;
size[1] = NumCols;
region.SetSize(size);
region.SetIndex(start);
image->SetRegions(region);
image->Allocate();
// Make a square
for (unsigned int r = 20; r < 80; ++r)
{
for (unsigned int c = 20; c < 80; ++c)
{
ImageType::IndexType pixelIndex;
pixelIndex[0] = r;
pixelIndex[1] = c;
image->SetPixel(pixelIndex, 15);
}
}
}
void
CreateImage2(ImageType::Pointer image)
{
// Create an image with 2 connected components
ImageType::RegionType region;
ImageType::IndexType start;
start[0] = 0;
start[1] = 0;
ImageType::SizeType size;
unsigned int NumRows = 200;
unsigned int NumCols = 300;
size[0] = NumRows;
size[1] = NumCols;
region.SetSize(size);
region.SetIndex(start);
image->SetRegions(region);
image->Allocate();
// Make another square
for (unsigned int r = 40; r < 100; ++r)
{
for (unsigned int c = 40; c < 100; ++c)
{
ImageType::IndexType pixelIndex;
pixelIndex[0] = r;
pixelIndex[1] = c;
image->SetPixel(pixelIndex, 15);
}
}
}
Classes demonstrated#
-
template<typename TInputImage1, typename TInputImage2 = TInputImage1, typename TOutputImage = TInputImage1>
class SubtractImageFilter : public itk::BinaryGeneratorImageFilter<TInputImage1, TInputImage2, TOutputImage> Pixel-wise subtraction of two images.
Subtract each pixel from image2 from its corresponding pixel in image1:
Output = Input1 - Input2.
This is done using
SetInput1( image1 ); SetInput2( image2 );
This class is templated over the types of the two input images and the type of the output image. Numeric conversions (castings) are done by the C++ defaults.
Additionally, a constant can be subtracted from every pixel in an image using:
SetInput1( image1 ); SetConstant2( constant );
- Note
The result of AddImageFilter with a negative constant is not necessarily the same as SubtractImageFilter. This would be the case when the PixelType defines an operator-() that is not the inverse of operator+()
- ITK Sphinx Examples: