Label Connect Components in Grayscale Image#
Synopsis#
Label connected components in a grayscale image.
Results#
Code#
C++#
#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkLabelToRGBImageFilter.h"
#include "itkRelabelComponentImageFilter.h"
#include "itkLabelStatisticsImageFilter.h"
#include "itkScalarConnectedComponentImageFilter.h"
#include "itksys/SystemTools.hxx"
#include <sstream>
#ifdef ENABLE_QUICKVIEW
# include "QuickView.h"
#endif
template <typename TImage>
static void
CreateImage(TImage * const image);
template <typename TImage, typename TLabelImage>
static void
SummarizeLabelStatistics(TImage * image, TLabelImage * labelImage);
int
main(int argc, char * argv[])
{
constexpr unsigned int Dimension = 2;
using PixelType = short;
using ImageType = itk::Image<PixelType, Dimension>;
using RGBPixelType = itk::RGBPixel<unsigned char>;
using RGBImageType = itk::Image<RGBPixelType, Dimension>;
using LabelPixelType = unsigned int;
using LabelImageType = itk::Image<LabelPixelType, Dimension>;
ImageType::Pointer image;
PixelType distanceThreshold = 4;
if (argc < 2)
{
image = ImageType::New();
CreateImage(image.GetPointer());
}
else
{
if (argc > 2)
{
distanceThreshold = static_cast<PixelType>(atoi(argv[2]));
}
image = itk::ReadImage<ImageType>(argv[1]);
}
using ConnectedComponentImageFilterType = itk::ScalarConnectedComponentImageFilter<ImageType, LabelImageType>;
auto connected = ConnectedComponentImageFilterType::New();
connected->SetInput(image);
connected->SetDistanceThreshold(distanceThreshold);
using RelabelFilterType = itk::RelabelComponentImageFilter<LabelImageType, LabelImageType>;
auto relabel = RelabelFilterType::New();
RelabelFilterType::ObjectSizeType minSize = 20;
if (argc > 3)
{
minSize = std::stoi(argv[3]);
}
relabel->SetInput(connected->GetOutput());
relabel->SetMinimumObjectSize(minSize);
relabel->Update();
SummarizeLabelStatistics(image.GetPointer(), relabel->GetOutput());
using RGBFilterType = itk::LabelToRGBImageFilter<LabelImageType, RGBImageType>;
auto rgbFilter = RGBFilterType::New();
rgbFilter->SetInput(relabel->GetOutput());
#ifdef ENABLE_QUICKVIEW
QuickView viewer;
viewer.AddImage(
image.GetPointer(), true, argc > 1 ? itksys::SystemTools::GetFilenameName(argv[1]) : "Generated image");
std::stringstream desc;
desc << "Scalar Connected Components:\n# of Objects: " << relabel->GetNumberOfObjects() << " Threshold: "
<< itk::NumericTraits<ConnectedComponentImageFilterType::OutputPixelType>::PrintType(
connected->GetDistanceThreshold())
<< " Min Size: " << relabel->GetMinimumObjectSize();
viewer.AddRGBImage(rgbFilter->GetOutput(), true, desc.str());
viewer.Visualize();
#endif
return EXIT_SUCCESS;
}
template <typename TImage>
void
CreateImage(TImage * const image)
{
// Create an image with 2 connected components
typename TImage::IndexType start = { { 0, 0 } };
start[0] = 0;
start[1] = 0;
typename TImage::SizeType size;
unsigned int NumRows = 200;
unsigned int NumCols = 300;
size[0] = NumRows;
size[1] = NumCols;
typename TImage::RegionType region(start, size);
image->SetRegions(region);
image->Allocate();
// Make a square
for (typename TImage::IndexValueType r = 20; r < 80; ++r)
{
for (typename TImage::IndexValueType c = 30; c < 100; ++c)
{
typename TImage::IndexType pixelIndex = { { r, c } };
image->SetPixel(pixelIndex, 255);
}
}
// Make another square
for (typename TImage::IndexValueType r = 100; r < 130; ++r)
{
for (typename TImage::IndexValueType c = 115; c < 160; ++c)
{
typename TImage::IndexType pixelIndex = { { r, c } };
image->SetPixel(pixelIndex, 255);
}
}
}
template <typename TImage, typename TLabelImage>
void
SummarizeLabelStatistics(TImage * image, TLabelImage * labelImage)
{
using LabelStatisticsImageFilterType = itk::LabelStatisticsImageFilter<TImage, TLabelImage>;
auto labelStatisticsImageFilter = LabelStatisticsImageFilterType::New();
labelStatisticsImageFilter->SetLabelInput(labelImage);
labelStatisticsImageFilter->SetInput(image);
labelStatisticsImageFilter->UseHistogramsOn(); // needed to compute median
labelStatisticsImageFilter->Update();
std::cout << "Number of labels: " << labelStatisticsImageFilter->GetNumberOfLabels() << std::endl;
std::cout << std::endl;
using LabelPixelType = typename LabelStatisticsImageFilterType::LabelPixelType;
for (auto vIt = labelStatisticsImageFilter->GetValidLabelValues().begin();
vIt != labelStatisticsImageFilter->GetValidLabelValues().end();
++vIt)
{
if (labelStatisticsImageFilter->HasLabel(*vIt))
{
LabelPixelType labelValue = *vIt;
std::cout << "Label: " << *vIt << std::endl;
std::cout << "\tmin: " << labelStatisticsImageFilter->GetMinimum(labelValue) << std::endl;
std::cout << "\tmax: " << labelStatisticsImageFilter->GetMaximum(labelValue) << std::endl;
std::cout << "\tmedian: " << labelStatisticsImageFilter->GetMedian(labelValue) << std::endl;
std::cout << "\tmean: " << labelStatisticsImageFilter->GetMean(labelValue) << std::endl;
std::cout << "\tsigma: " << labelStatisticsImageFilter->GetSigma(labelValue) << std::endl;
std::cout << "\tvariance: " << labelStatisticsImageFilter->GetVariance(labelValue) << std::endl;
std::cout << "\tsum: " << labelStatisticsImageFilter->GetSum(labelValue) << std::endl;
std::cout << "\tcount: " << labelStatisticsImageFilter->GetCount(labelValue) << std::endl;
std::cout << "\tregion: " << labelStatisticsImageFilter->GetRegion(labelValue) << std::endl;
}
}
}
Classes demonstrated#
-
template<typename TInputImage, typename TOutputImage, typename TMaskImage = TInputImage>
class ScalarConnectedComponentImageFilter : public itk::ConnectedComponentFunctorImageFilter<TInputImage, TOutputImage, Functor::SimilarPixelsFunctor<TInputImage::ValueType>, TMaskImage> A connected components filter that labels the objects in an arbitrary image. Two pixels are similar if they are within threshold of each other. Uses ConnectedComponentFunctorImageFilter.
- ITK Sphinx Examples: